
Beispiel-Proceedings, 1–13
Hans-Werner Hilse (ed.)
c© Universitätsverlag Göttingen 2007

Recurrent Neural Networks
An introduction to binary classification using
Natural Language Processing

F. Süttmann1,*

1Georg-August-Universität Göttingen, Germany
*Email: felix.suettmann@gmail.com

Abstract. This essay outlines the applicability of Recurrent Neural Networks for super-
vised binary classification tasks in Natural Language Processing. It gives a general overview
of the relevant theory and different recurrent layers. The theory is than applied to a binary
classification task of offensive German language in twitter posts. Different model struc-
tures are compared to discover dependencies on batch size and number of iterations for
generalization.

1 Introduction

Recurrent Neural Networks are a special Deep Learning architecture optimized for
working with sequences. Their name has its origin in a paper by Rumelhart et al.
(1986) and has developed much further since then. This essay aims at outlining the
general theory behind Recurrent Neural Networks (RNN) and their most prominent
extensions. The focus will be on binary classification tasks in Natural Language
Processing, because sentences can be viewed as sequences. Information about the
meaning of a sentence can be found in multiple words or even span over multiple
sentences. To evaluate the sentiment models therefore need to be able to make a
connection of information over a long sequence of words with variable length (Good-
fellow et al. 2016). We will outline why RNN are specially adapt to that and where
they perform less. For simplicity, matters of unsupervised learning are left unat-
tended. The last chapter compares different recurrent layers on a corpus of German
Twitter posts that are either offensive or not. Along with that different batch sizes
and numbers of iterations are compared on four different recurrent layers.

2 Theoretical Foundations

Recurrent neural networks are designed to handle long sequences of data of variable
length, which would be difficult for classical feed-forward networks. To process such
a sequence of values x0, x1 . . . , xt with t = 0, 1, . . . , τ , parameters are shared over
the whole sequence and updated all at once. This chapter first gives an introduction

2 F. Süttmann

to simple Recurrent Neural Networks. In the Section 2.2 problems during the opti-
mization of the model, that led to the creation of different, more complex recurrent
layers, are described. The most prominent two, Long Short Term Memory networks
and Gated Recurrent Units, are outlined in Section 2.3 and 2.4. Section 2.5 gives an
overview of different other architectures and how RNN can be deep.

2.1 Recurrent Neural Network

A simple Recurrent Neural Network has a specific, recurrent layer that evaluates a
sequence. The sequence of values x0, x1 . . . , xt with t = 0, 1, . . . , τ is first broken
down into single pieces. These parts parts of the sequence are then used as input
for the recurrent layer, see Figure 1. The special characteristic of a recurrent layer is
that it feeds its output back into itself and is able to generalize to sequence length.
Figure 1 represents two common representations of RNN, a rolled computational
graph on the left and an unrolled one on the right. In both illustrations output ht of
the hidden unit A is, together with the next input from the sequence xt+1, fed back
into the same cell.

Figure 1. Rolled and unrolled Recurrent Neural Network (Olah 2015)

A is a simple RNN cell which commonly contains either a logistic sigmoid activation
function (sigmoid)

sigmoid(z) = σ(z) =
1

1 + e−z
. (1)

or hyperbolic tangent activation function (tanh)

tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
(2)

Assuming that we use the tanh function as activation function, ht the output of the
hidden recurrent layer is generated by

ht = tanh(W (hh)ht−1 +W (hx)xt) (3)

with W (hh) being the weight matrix between this and the previous hidden state ht−1
and W (hx) are the weights between the input and the hidden state. The tanh function
is a non-linear function applied element wise to the product[

W (hh) W (hx)
] [
h
x

]
.

Recurrent Neural Networks 3

The block matrix has dimensions D(h) × (d + D(h)) and the vector (d + D(h)) × 1,

with x ∈ Rd and h ∈ RD(h)

(Manning & Socher 2017). The initialization vector h0
is commonly just a vector of all zeros and xt is a row vector of a large matrix E ,
defining for example a word (see Section 3.2).

Assuming no further hidden layers, the output of our recurrent layer can be eval-
uated directly. This can either be done at every output of the hidden layer, for
example if we want to predict the next word in a sequence, or only at the end, given
we want a binary or categorical classification. For that we can choose different ac-
tivation functions. We want do do a binary classification and a therefore use the
sigmoid activation function. The prediction is then done by

ŷt = sigmoid(W (s)ht), (4)

with ŷ ∈ R|V | and W (s) ∈ R|V |×D(h)

. |V | represents the number of possible values yt
can take, for example the whole vocabulary or in the binary case, two (Manning &
Socher 2017). Equations 3 and 4 are commonly referred to as forward propagation
equations (Goodfellow et al. 2016).

2.2 Model Optimization

To optimize the RNN a loss function Lt has to be specified. The loss function deter-
mines the divergence of the prediction from the true parameter values. Depending
on the task different loss functions have to be used. This is often some form of max-
imum likelihood criterion, where the cost function is described as the cross-entropy
between the training data and the model distribution (Goodfellow et al. 2016). If we
assume binary classification the cross entropy loss can be specified as

L = −(y log(p) + (1− y) log(1− p)) (5)

with p being the softmax probability for either class and y ∈ 0, 1 our binary target
variable. For evaluating the loss at each concatenation of the RNN a negative log-
likelihood of the from

L(xt, yt) = −
∑
t

log pmodel (yt | {x0, . . . , xt}) , (6)

where yt is the entry from the model output vector ŷt, can be defined (Goodfellow
et al. 2016). Goodfellow et al. (2016) note that computing the gradient from this
loss function can be computationally expensive for RNN as it involves first a long
forward pass through the sequence, followed by a backwards pass of the same length.
They also mention that the run time cannot be reduced by parallelization as forward
propagation is inherently sequential and all states have to be saved resulting in high
memory costs.

A RNN, like most other Neural Networks (NN), is trained by computing the gra-
dient and iteratively adjusting the weights. In case of a RNN this process is called

4 F. Süttmann

back-propagation through time as we have go back along the concatenation to the
first instance W (hh) or W (hx) was used.

As a simplified example we can look at determining the gradient of the W (hh) weight
matrix at time t. The derivative of the loss function at time t, with respect to the
weight matrix of the hidden layer, is determined by applying the chain rule

∂Lt

∂W (hh)
=

t∑
k=1

∂Lt

∂ŷt

∂ŷt
∂ht

∂ht
∂hk

∂hk
∂W (hh)

, (7)

where
∂ht
∂hk

=

t∏
j=k+1

∂hj
∂hj−1

(8)

is the product of jacobian matrices and total derivative

∂hk
∂W (hh)

(9)

(Pascanu et al. 2013).

This product of partial derivatives (Equation 7) can lead to problems with the
gradients resulting in the optimization either failing completely or loosing the ability
memorize past information. Both issues where first formally described by Bengio
et al. (1994). We separate between two sub-problems. Firstly, by multiplying many
large values, gradients can get so large that the weights are updated to NaN such
that they cannot be updated anymore. This issue is called exploding gradients and
Pascanu et al. (2013) recommend solving it by clipping the gradients if they get too
large.
The larger problem are vanishing gradients. They are the result of taking the prod-
uct of many small partial derivatives (Hochreiter 1991), resulting in very low values
for the gradient. As the consequence networks loose their ability to memorize infor-
mation from earlier parts of the sequence. The cause of this phenomenon can have
multiple reasons. Most commonly the derivatives have values close to zero. If the cho-
sen activation function in the recurrent layer is for example a sigmoid function, with
a derivative that is bound upwards by 0.25 (Figure 2), products of derivatives can
get small fast. As such it is better to use other activation functions like tanh instead.
Figure 2 gives an illustration of different activation functions and their derivatives.
The advantage of tanh is its derivative is bound upwards by one. Another cause
of vanishing gradients can be the initialization of the weight matrices close to zero
(Pascanu et al. 2013), this can be solved by specifying initialization values that are
not close to zero. The most severe problem is that the sequence length evaluated
by the network can make the problem more severe. The shorter the sequence, the
less of a problem it poses. To solve this within a simple RNN is difficult, specially
if the network is supposed to remember information far in the past. Other network
structures building on top of the idea of RNN are therefore introduced in Section 2.3
and 2.4, that uplift this restriction and are better at retaining information far in the

Recurrent Neural Networks 5

−4 −2 0 2 4

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1) Different activation functions

x

fu
n

c
ti
o

n
 v

a
lu

e
s

ReLU

Sigmoid

tanh

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

2) Derivatives of activation functions

x

fu
n

c
ti
o

n
 v

a
lu

e
s

Figure 2. Different activation functions and their derivatives (self)

past. Vanishing and exploding gradients are not unique to RNN, but because of the
special structure and their recurrence they are most prominent in networks of this
kind.

2.3 Long Short Term Memory

A common extension of RNN are Long Short Term Memory (LSTM) networks which
are specialized on connecting information over long sequences. First described by
Hochreiter & Schmidhuber (1997) to create a network that is designed to learn long-
term dependencies, it introduces a much more complex structure withing the hidden
recurrent cells than just the one activation function from before. An illustration of
a LSTM in its unrolled state can be seen in Figure 3.

Figure 3. Unrolled Long Short Term Memory network (Olah 2015)

The general functionality of a recurrent neural network stays the same and the se-

6 F. Süttmann

quence is still evaluated step by step while taking the previous inputs into account.
Newly added is the cell state Ct which is represented by the upper horizontal line,
running from left to right. It acts as the memory of the network where information
can be stored and removed.

The first upwards arrow to the cell state on the left is called ”forget get gate layer”
and consists of a single sigmoid activation function

ft = σ(W (f) · [ht−1, xt] + bf) (10)

which outputs a matrix of values between zero and one (Hochreiter & Schmidhuber
1997). By multiplying this matrix with the cell state values close to zero indicate
that specific information in the cell state should be forgotten and vice versa.

The two arrows in the middle, that are multiplied and then added to the cell state
are called ”input gate layer”. They form a unit to update the cell state with new
information. The update to the cell state is determined by applying a tanh activation
function, creating a proposed new cell state C̃t and multiplying it with the output of
a sigmoid activation function. In this case the sigmoid layer acts as a type of update
function, where values close to one indicate storing new information. The ”input
gate layer” cannot delete information from the cell state because it is added to the
old cell state only after that. The input gate can be expressed as

it = σ(W (i) · [ht−1, xt] + bi)

C̃t = tanh(W (c) · [ht−1, xt] + bc).
(11)

To generate output ht a tanh activation function is applied to the updated cell
state at time t and multiplied with the output of a sigmoid function

Ct = ft · Ct−1 + it · C̃t

ot = σ(W (o) · [ht−1, xt] + bo)

ht = ot · tanh(Ct).

(12)

The matrix ot can be considered as a filter and also means that the hidden state ht
does not go directly through the whole network. Only the cell state forms a direct
path through the whole sequence of recurrent cells and can be considered as having
an identity function as activation. Because of that the LSTM does not suffer from
the vanishing gradient problem caused by small derivatives.

The weight matrices W (f), W (i), W (o) and W (C) are now being trained instead
of W (hh) and W (hx). This greatly increases the number of parameters a LSTM has
to learn. The parameters b(f), b(i), b(o) and b(C) are added bias terms. Jozefowicz
et al. (2015) recommend choosing 1 as an initialization for bias b(f) to boost the
models learning speed by preventing issues with the gradients. There are also other
variations of the classical LSTM that either merge the forget and input gate lay-
ers or add peepholes for the hidden state to have a look at the cell state (Gers &
Schmidhuber 2000).

Recurrent Neural Networks 7

2.4 Gated Recurrent Unit

The most common alternative to LSTMs is the Gated Recurrent Unit (GRU) intro-
duced by Cho et al. (2014). It has the advantage of having slightly less parameters to
train than a LSTM, while retaining the same memory capacity. Figure 4 represents
the structure of a single unrolled GRU cell.

Figure 4. Unrolled Long Short Term Memory network (Olah 2015)

The most notable difference is that it lacks a dedicated cell state like the LSTM.
Instead the hidden state is again looped back into the cell. In a GRU the hidden
state and the cell state are one and the input and forget gates are also merged.
This reduces the number of trainable parameters (Cho et al. 2014). A GRU can be
represented by

zt = σ(W (z) · [ht−1, xt])
rt = σ(W (r) · [ht−1, xt])
h̃t = tanh(W · [rt · ht−1, xt])
ht = (1− zt) · ht−1 + zt · h̃t

(13)

A comparison between different LSTM variations can be found in a a paper by Greff
et al. (2017). They find that most of these different variations perform about the
same. This goes along with Jozefowicz et al. (2015) that resume that there are no
different RNN architectures that can consistently outperform LSTM and GRU.

2.5 Recurrent Neural Network Variants

In the field of deep learning depth is considered as the number of hidden layers in a
NN and width is the number of hidden units (nodes) each hidden layer posses. The
RNN variants we have seen so far in Section 2.1 to 2.4 only had a depth of one and
a width depending on the maximum sequence length. These are only some possible
variants of recurrent neural network layers. They can also be extended to be deep by
returning a sequence as input for the next recurrent layer and are often paired with
some non recurrent dense layers, before generating output. Recent developments
have also often paired recurrent layers with convolutional layers that are then mostly

8 F. Süttmann

used for preprocessing the data. For an example in augmented attention see Xu et al.
(2015).

RNN can not only be one directional but also bidirectional (Schuster & Paliwal
1997). The advantage of Bidirectional Recurrent Neural Networks (BRNN) is that
they can also take future context information into account and do not require a fixed
input length. BRNN have shown to perform very well in language based models
(Salehinejad et al. 2017). There are many other variants of RNN, for an overview of
advantages and disadvantages of different layers see Salehinejad et al. (2017).

3 Example

To illustrate the previous theory a binary classification task of German Twitter posts
regarding offensive and non offensive language was chosen. The data was collected
by Wiegand et al. (2018) and originally designed as a shared task to explore the
identification of offensive language under the name ”GermEval-2018”. It consist of a
binary classification and a finer differentiation between four categories. Here only the
binary classification of offensive language will be attempted. Wiegand et al. (2018)
define offensive language as ”hurtful, derogatory or obscene comments made by one
person to another person”. We will first give an overview of the data and how it
had to be processed to match the word embeddings in Section 3.2. At last different
models are compared in Section 3.3 and problems with training NN are discovered.

3.1 Data

The raw Twitter data from ”GermEval-2018” shared task requires a couple prepro-
cessing steps to be useful for the evaluation with Deep Learning models. As we
attempt a binary classification task we first have to check if both classes appear
equally often. From 5009 observations in total 3321 (66%) are declared as ”other”
and 1688 (34%) as ”offensive”. If a model is trained on imbalanced data it tends
towards guessing the more frequent class without adjusting its weights properly. This
phenomenon is called ”accuracy paradox” and results is a poor model performance
(Sun et al. 2009). To avoid this different approaches are feasible. Ideally more data
is collected. As that is not possible here one can either under-sample cases from the
dominant class or over-sample cases from the underrepresented class (Chawla 2009).
Other approaches like model penalization or different metrics can also be feasible.
For simplicity and due to the small size of the data set the oversampling approach
was chosen. This led to a total of 6369 observations.

Due to the special nature of Twitter data, strings have to be preprocessed (Cieliebak
et al. 2017). Hashtags and URLs, along with digits that are larger than nine, are
replaced by tokens. Some special characters are removed but otherwise most punc-
tuation will be kept as it often contains information in social media posts. Emoji
where not considered in these processing steps and where split up into.

Next all the words and symbols are assigned a word token in form of a number.

Recurrent Neural Networks 9

These are then used to generate unique number vectors for each post. The maxi-
mum length was 58 words or symbols long.

At last we split the training data into three parts. For that we first split of 20%
of the data for testing purposes. The remaining 80% are then split into 75% for
training and 25% for validation. This concludes the data preparation. The corpus
of words and symbols is now in a tokenized form consisting of number vectors with
a length of 58. Stings with less than 58 words or symbols are padded, longer ones
would be truncated.

3.2 Word Embedding

To improve the performance of language based Deep Learning models one often uses
word embeddings. These embeddings map a vocabulary into a high dimensional
vector space, usually 300 or larger, by analyzing a huge corpus of text. Word embed-
dings are language specific and can be trained using different criteria (Lavelli et al.
2004). Finding good and in R usable German word embeddings is more difficult
than for English ones. The word embeddings that where used in the end are from
Müller (2019) and are trained using ”word2vec” (Mikolov et al. 2013) on a corpus of
Wikipedia and news articles from 2013 to 2015.

The advantage of using word embeddings is that they bring in a lot of informa-
tion about the language they are trained on and how vocabulary interacts. As such
they can offset problems when working with small data sets, where some words might
be very infrequent and seldom appear during training. The downside to the specific
word embeddings by Müller (2019) is, that they do not contain emoji which can
be important to understand irony or emotions in social media posts. The common
procedure would be to update the pretrained word embeddings with the information
on emoji as done by Cieliebak et al. (2017). This was not done here. After the
preprocessing steps of the data, about 87% of the words or punctuation signs in the
data corpus match with words or signs in the embeddings.

3.3 The Model

For the model design different types of Recurrent Neural Networks were tested. The
general structure was inspired by the design chosen by Corazza et al. (2018), who won
the ”GermEval-2018” task with the best performing model. Their model takes emoji
into account and also splits hashtags with the help of n-grams, both were not done
here. Four models are compared. All four consist of a fixed embedding layer followed
by one or two recurrent layers. The output of the recurrent layers then moves through
two dense layers with rectified linear unit activation functions, one with 500 units and
the next with 300 units. The last layer is a single unit with sigmoid activation func-
tion. Apart from the recurrent layers all hidden layers are the same in all four models.

Model 1 has two bidirectional recurrent layers. The first is a LSTM layer return-
ing a sequence which is used as input for a GRU layer, Model 2 is a bidirectional

10 F. Süttmann

LSTM and Model 3 a bidirectional GRU. Model 4 only has a simple recurrent layer.
The models were trained using binary crossentropy as loss function. The disadvan-

Model Batch Epoch Loss Binary Acc. F1 F1 (test) Time

1 Model 1 25 6 0.65 0.64 0.55 0.71 3.84
2 Model 2 25 6 0.63 0.63 0.54 0.69 2.20
3 Model 3 25 6 0.65 0.61 0.52 0.67 1.86
4 Model 4 25 6 0.70 0.47 0.00 0.00 32.82
5 Model 1 25 12 0.62 0.64 0.53 0.70 7.48
6 Model 2 25 12 0.64 0.64 0.59 0.73 4.69
7 Model 3 25 12 0.64 0.64 0.53 0.69 3.67
8 Model 4 25 12 0.69 0.53 0.63 0.79 1.11
9 Model 1 25 18 0.63 0.67 0.58 0.73 10.93

10 Model 2 25 18 0.70 0.65 0.53 0.69 6.32
11 Model 3 25 18 0.63 0.67 0.62 0.75 5.24
12 Model 4 25 18 0.69 0.52 0.56 0.72 1.67
13 Model 1 75 6 0.64 0.63 0.54 0.68 2.69
14 Model 2 75 6 0.65 0.62 0.59 0.74 1.64
15 Model 3 75 6 0.66 0.60 0.53 0.66 1.30
16 Model 4 75 6 0.69 0.54 0.54 0.69 32.79
17 Model 1 75 12 0.64 0.65 0.57 0.71 5.03
18 Model 2 75 12 0.65 0.66 0.60 0.75 3.18
19 Model 3 75 12 0.65 0.63 0.52 0.66 2.64
20 Model 4 75 12 0.69 0.52 0.52 0.64 1.03
21 Model 1 75 18 0.64 0.67 0.55 0.69 7.64
22 Model 2 75 18 0.66 0.66 0.60 0.73 4.96
23 Model 3 75 18 0.64 0.66 0.58 0.72 4.40
24 Model 4 75 18 0.69 0.53 0.55 0.68 1.66
25 Model 1 125 6 0.66 0.63 0.59 0.75 3.30
26 Model 2 125 6 0.64 0.63 0.58 0.73 2.21
27 Model 3 125 6 0.65 0.62 0.54 0.68 1.88
28 Model 4 125 6 0.69 0.53 0.63 0.79 52.92
29 Model 1 125 12 0.63 0.65 0.54 0.67 7.56
30 Model 2 125 12 0.63 0.64 0.55 0.70 5.84
31 Model 3 125 12 0.66 0.62 0.51 0.65 4.93
32 Model 4 125 12 0.69 0.51 0.54 0.68 1.85
33 Model 1 125 18 0.63 0.65 0.54 0.68 17.87
34 Model 2 125 18 0.64 0.65 0.56 0.73 11.56
35 Model 3 125 18 0.65 0.65 0.52 0.64 9.77
36 Model 4 125 18 0.68 0.56 0.63 0.79 3.31

Table 1. Four different models trained with nine different specifications of batch size and
number of epochs.

tage of doing so can be illustrated using a short example. If the output layer returns
a vector for four different strings of the form (0.3, 0.2, 0.44, 0.36) then the binary
crossentropy with a threshold of 0.5 sets this to (0, 0, 0, 0). Assuming that the true
target is (0, 0, 1, 0), binary accuracy is 75%. Although this indicates high accuracy
it needs to be treated with care. If the target of the NN is to classify all tweets with

Recurrent Neural Networks 11

offensive language correctly, then binary crossentropy is not a good measure for the
loss. In that case a custom metric that measures the accuracy in one respective class
is recommended. The ”GermEval-2018” shared task measured models performance
with the F1-score, which gives equal weight to both classes. It represents the har-
monic mean between precision and recall and its disadvantages are outlined by Hand
& Christen (2018). We failed to specify a working custom loss function in R and
where forced to work with the binary crossentropy. The F1-score is still computed
as custom metric to measure model performance after training.

Each of the four models was trained nine times with different specifications, resulting
in 36 model fits. The nine different specifications had batch sizes of 25, 75 and 125,
with 6, 12 and 18 training epochs each. The result can be seen in Table 3.1.

The table reports the name of the model along with the batch size and number
of training epochs to look for trends during training. As performance measures loss,
binary accuracy and F1-score on the test data that was split of the training data.
The F1-score of the real test data with n = 3532 is displayed as ”F1 (test)”. Finally
the computation time, using three CPU processors, is reported in the last column.
The average computation time was 7.6min, although very long computation times
for Model 4 seem to be the cause of the high mean.

If we take a look at performance, by comparing the F1-score, there appears to be no
trend regarding the choice of hyperparameters. Values are consistently between 0.51
and 0.63 disregarding the one zero value for Model 4. The models even achieve F1
values as high as 0.79 on the test data.

True
Other Offensive Total

Prediction
Other 26 13 39
Offensive 1176 2317 3493

Total 1202 2330 3532

Table 2. Confusion matrix for Model 4 in row 36.

The best performing model from Corazza et al. (2018), that won the competition,
achieved a F1-score of 0.68. This indicates that we might have some issues that are
not displayed by the F1-score. By looking at a confusion matrix for Model 4 in row
36 (Table 3.2) one can see that the simple RNN mostly predicted ”offensive”. This
led to a sensitivity of 0.02 and a specificity of 0.99 resulting in such a high F1-score.
The cause of this problem is probably the binary crossentropy loss used for training
the model.

We can look at Model 1 in row 12 of Table 3.1 for another comparison. The confusion
matrix (Table 3.3) for the test data that achieved an F1-score of 0.72 has a much
better allocation of predictions. As a result sensitivity is 0.50 and a specificity of
0.63. These results are to be favored compared to the simple RNN layer as we are

12 F. Süttmann

True
Other Offensive Total

Prediction
Other 598 858 1456
Offensive 604 1472 2076

Total 1202 2330 3532

Table 3. Confusion matrix for Model 1 in row 12.

trying to predict both classes as accurate as possible.

Similar observations can be made by examining Model 2 and Model 3. Both have
much better values for sensitivity and specificity compared to the simple RNN in
Model 4.

4 Conclusion

We have shown how Neural Networks can be adapted to evaluate sequences of flex-
ible length and connect information at different time points. The particularity of
Recurrent Neural Networks is that they loop the output of each time step back into
itself. Because this can increase the chance of vanishing and exploding gradients,
solutions were proposed. Clipping large gradients was recommended to prevent ex-
ploding gradients and different, advanced RNN architectures like Gated Recurrent
Units and Long Short Term Memory networks where proposed to prevent vanishing
gradients and boost the memory capacity of RNN.

Chapter 3 introduced the applicability of RNN to Natural Language Processing by
applying four different RNN layers to a binary classification task of Twitter posts in
German. Additionally the use and benefit of word embeddings was described. We
where able to show that the number of training epochs and the batch size had little
effect on the model performance. Further LSTM and GRU layers seemed to be better
adapted to the task of binary classification with social media data. Specially the sim-
ple RNN tended towards guessing only one class, resulting in a decent score, but low
performance. This illustrated how important it is to choose the right loss for training
and choosing certain meaningful evaluation metrics. Because of the special nature
of NN issues with misclassification can be more difficult to notice than in classical
statistics. For further reading on advanced RNN and state of the art developments
Xu et al. (2015) can be recommended.

References

Bengio, Y., Simard, P., Frasconi, P., et al. 1994, IEEE transactions on neural networks, 5,
157

Chawla, N. V. 2009, in Data mining and knowledge discovery handbook (Springer), 875–886
Cho, K., Van Merriënboer, B., Gulcehre, C., et al. 2014, arXiv preprint arXiv:1406.1078
Cieliebak, M., Deriu, J. M., Egger, D., & Uzdilli, F. 2017, in 5th International Workshop on

Recurrent Neural Networks 13

Natural Language Processing for Social Media, Boston, MA, USA, December 11, 2017,
Association for Computational Linguistics, 45–51

Corazza, M., Menini, S., Arslan, P., et al. 2018, in GermEval 2018 Workshop
Gers, F. A. & Schmidhuber, J. 2000, in Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges
and Perspectives for the New Millennium, Vol. 3, IEEE, 189–194

Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press), http://www.
deeplearningbook.org

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J. 2017, IEEE
transactions on neural networks and learning systems, 28, 2222

Hand, D. & Christen, P. 2018, Statistics and Computing, 28, 539
Hochreiter, S. 1991, TU Münich
Hochreiter, S. & Schmidhuber, J. 1997, Neural computation, 9, 1735
Jozefowicz, R., Zaremba, W., & Sutskever, I. 2015, in International Conference on Machine

Learning, 2342–2350
Lavelli, A., Sebastiani, F., & Zanoli, R. 2004, in Proceedings of the thirteenth ACM inter-

national conference on Information and knowledge management, ACM, 615–624
Manning, C. & Socher, R. 2017, CS224n: Natural Language Processing with Deep Learning

(Winter 2017), https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/,
accessed: 2019-03-24

Mikolov, T., Chen, K., Corrado, G., & Dean, J. 2013, arXiv preprint arXiv:1301.3781
Müller, A. 2019, German Word Embeddings, https://devmount.github.io/

GermanWordEmbeddings/, accessed: 2019-03-05
Olah, C. 2015, Understanding LSTM Networks, https://colah.github.io/posts/

2015-08-Understanding-LSTMs/, accessed: 2019-03-24
Pascanu, R., Mikolov, T., & Bengio, Y. 2013, in International conference on machine learn-

ing, 1310–1318
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Learning internal representations

by error propagation, Tech. rep., California Univ San Diego La Jolla Inst for Cognitive
Science

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. 2017, arXiv preprint
arXiv:1801.01078

Schuster, M. & Paliwal, K. K. 1997, IEEE Transactions on Signal Processing, 45, 2673
Sun, Y., Wong, A. K., & Kamel, M. S. 2009, International Journal of Pattern Recognition

and Artificial Intelligence, 23, 687
Wiegand, M., Siegel, M., & Ruppenhofer, J. 2018, in 14th Conference on Natural Language

Processing KONVENS 2018
Xu, K., Ba, J., Kiros, R., et al. 2015, in International conference on machine learning,

2048–2057

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/
https://devmount.github.io/GermanWordEmbeddings/
https://devmount.github.io/GermanWordEmbeddings/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	Introduction
	Theoretical Foundations
	Recurrent Neural Network
	Model Optimization
	Long Short Term Memory
	Gated Recurrent Unit
	Recurrent Neural Network Variants

	Example
	Data
	Word Embedding
	The Model

	Conclusion

